Conditional Cytokine Therapeutics for Tumor-Targeted Biological Activity: Preclinical Characterization of a Dual-Masked IFN-a2b

Alexey Berezhnoy, Hsin Wang, Na Cai, Hikmat Assi, Nicole Lapuyade, Madan Paidhungat, Ken Wong, Michael Krimm, Robert T. Dunn II, Dylan Daniel, Marcia Belvin, and Erwan Le Scolan

CytomX Therapeutics, Inc., South San Francisco, CA

RESULTS

BACKGROUND

Cytokines have been shown to elicit broad anti-tumor activity in preclinical models. These results have translated into the approval for clinical use of IFN-a and IFN-g. Therapeutic effects of IFN-a have been confirmed for many human cancers; however, the clinical success of cytokines has been limited by toxicity and poor systemic delivery.

CytomX Therapeutics has developed a new class of antibodies called Probody® therapeutics (Pb-Tx), designed to retain the therapeutic antibody by minimizing toxicity to healthy tissue while being preferentially activated in the tumor microenvironment (TME) by tumor-associated proteases. CytomX has applied the Pb-Tx platform across multiple modalities including traditional antibodies, antibody-drug conjugates, and T-cell engagers. Pb-Tx is a cleavable, conditionally active construct that is designed to widen the therapeutic window by minimizing binding to targets in healthy tissue while being preferentially activated in the TME by tumor-associated proteases.

Methods

Cytokines have been shown to elicit broad anti-tumor activity in preclinical models. These results have translated into the approval for clinical use of IFN-a and IFN-g. Therapeutic effects of IFN-a have been confirmed for many human cancers; however, the clinical success of cytokines has been limited by toxicity and poor systemic delivery.

CytomX Therapeutics has developed a new class of antibodies called Probody® therapeutics (Pb-Tx), designed to retain the therapeutic antibody by minimizing toxicity to healthy tissue while being preferentially activated in the tumor microenvironment (TME) by tumor-associated proteases. CytomX has applied the Pb-Tx platform across multiple modalities including traditional antibodies, antibody-drug conjugates, and T-cell engagers. Pb-Tx is a cleavable, conditionally active construct that is designed to widen the therapeutic window by minimizing binding to targets in healthy tissue while being preferentially activated in the TME by tumor-associated proteases.

Results

The Pb-IFN-a2b construct was engineered with a dual masking strategy to improve the therapeutic index of IFN-a therapy and allow systemic delivery. IFN-a2b, and a cleavable affinity peptide mask at the other end. The construct was optimized to both have reduced systemic IFN-a2b mediated toxicity as compared to the unmasked cytokine.

hamster, which has been shown to be sensitive to IFN-a mediated toxicity in the liver and bone marrow. In highly potent in syngeneic mice in vivo efficacy studies. Finally, we established an in vivo safety model in an additional discovery.

REFERENCES

CONCLUSIONS

• Dual masked, conditionally active IFN-a2b demonstrated ~5000-fold reduced IFN-a2b signaling measured by reporter assay. Activation by tumor-associated proteases restores full function of the molecule.

• Pb-IFN-a2b directly activates primary immune cells, including immune infiltrate in dissociated human tumors.

• Pb-IFNa-A/D suppresses growth of syngeneic murine tumors in vivo. Co-administration of Pb-IFNa-A/D with PD-L1 mAb enhances the effect.

• Conditionally active IFN-a2b cytokine is well tolerated up to 15 mg/kg in hamsters compared with the unmasked cytokine.

• Pb-IFN-a2b cytokine is generally well tolerated in cynomolgus monkeys. Further preclinical evaluation of the in vivo pharmacology and toxicity for the conditionally IFN-a program is ongoing.

• The CytomX platform is being extended to additional cytokine families.

SITC 2021 Annual Meeting

Washington, D.C. November 15-19, 2021