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Abstract: The role of proteases in cancer was originally 
thought to be limited to the breakdown of basement 
membranes and extracellular matrix (ECM), thereby 
promoting cancer cell invasion into surrounding normal 
tissues. It is now well understood that proteases play a 
much more complicated role in all stages of cancer pro-
gression and that not only tumor cells, but also stromal 
cells are an important source of proteases in the tumor 
microenvironment. Among all the proteolytic enzymes 
potentially associated with cancer, some proteases have 
taken on heightened importance due to their significant 
up-regulation and ability to participate at multiple stages 
of cancer progression and metastasis. In this review, we 
discuss some of the advances in understanding of the 
roles of several key proteases from different classes in the 
development and progression of cancer and the potential 
to leverage their upregulated activity for the development 
of novel targeted treatment strategies.

Keywords: cancer; prodrug; protease; proteolysis; tumor 
microenvironment.

Introduction: upregulated protease 
activity is a hallmark of cancer
Progression, invasion and metastasis of cancer result from 
several interdependent processes in which  proteolytic 
enzymes are implicated (Liotta and Kohn, 2001; Mason and 
Joyce, 2011; Dudani et al., 2018), and it has been recognized 

for many years that protease activity is required for main-
tenance of the transformed phenotype (Turk, 2006). The 
role of proteases in cancer was originally thought to be 
limited to the breakdown of basement membranes and 
extracellular matrix (ECM), thereby promoting cancer cell 
invasion into surrounding normal tissues. It is now well 
understood that proteases play a much more complicated 
role in all stages of cancer progression and that not only 
tumor cells, but also stromal cells are an important source 
of proteases in the tumor microenvironment (Figure 1) 
(Sevenich and Joyce, 2014). The complexity of proteolytic 
systems is impressive, as evidenced by the finding that 
more than 500 genes encoding proteases or protease-like 
proteins are present in the human genome (Puente et al., 
2003) with multiple nodes of interaction (Mason and Joyce, 
2011). However, among all the proteolytic enzymes poten-
tially associated with cancer, some proteases have taken 
on heightened importance due to their significant up- 
regulation and ability to participate at multiple stages of 
cancer progression and metastasis. Several novel technol-
ogies have been developed that leverage these proteases to 
make more effective approaches for tumor diagnosis and 
 treatment (Dudani et al., 2018).

Protease activity is tightly 
regulated
In contrast to post-translational modifications such as 
phosphorylation, proteolysis is an irreversible event that 
is regulated by multiple mechanisms (Figure 2). Most 
proteases are translated as inactive precursors called 
zymogens that require the removal of a pro-domain for 
enzymatic activity. In addition, proteases and their cognate 
inhibitors are often spatially co-localized, setting up a 
competitive process between the generation of an active 
protease and inhibition of proteolytic activity (Figure 2) 
(Turk, 2006). These regulatory mechanisms suggest that 
proteolytic activity in healthy tissue is transient and a 
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short duration of activity is sufficient to mediate a bio-
logical outcome. In contrast, protease activity in tumors 
is thought to be constitutive, reflecting the underlying 
requirement of proteolysis to maintain the transformed 
state. The development of tools to image protease activ-
ity in vivo in preclinical experiments and more recently in 
clinical studies has supported this model (Whitley et al., 
2016; Yim et al., 2018). For example, ex vivo fluorescence 
imaging of resected soft tissue sarcoma tissue and in vivo 
imaging of breast cancer patients intravenously injected 
with a probe that is cleavable by tumor-associated pro-
tease activity showed that the fluorescence from the 
tumor was significantly higher than the fluorescence from 
normal tissue (Whitley et al., 2016). Taken together, these 
data suggest a model in which proteolytic activity is con-
stitutive in tumors and transient in healthy tissue.

The proteolytic enzymes in the tumor microenviron-
ment implicated in tumor progression and metastasis 
belong to four major catalytic classes: (1) serine proteases 
(Murray et  al., 2016; Mahmood et  al., 2018), (2) cysteine-
type lysosomal proteases (Turk et al., 2012; Olson and Joyce, 
2015), (3) aspartyl-type lysosomal proteases (Sevenich and 
Joyce, 2014) and (4) metalloproteinases [soluble and inte-
gral membrane matrix metalloproteinases (MMP), adama-
lysin-related disintegrin and metalloproteinases (ADAMS), 
and bone morphogenetic protein-1-type  proteases] (Kessen-
brock et al., 2010; Vadon-Le Goff et al., 2015; Mullooly et al., 
2016). Several example proteases are discussed further to 
highlight the potential of harnessing upregulated tumor-
associated protease activity for prodrug activation.

Urokinase plasminogen activator 
(uPA) in cancer
Urokinase-type plasminogen activator (uPA) is a serine 
endopeptidase (clan PA, family S1) that is extracellu-
larly localized and involved in the plasminogen activa-
tor system. Cleavage of plasminogen by uPA produces 
active plasmin, which leads to degradation of fibrin and 
extra-cellular matrix (ECM) as well as activation of growth 
factors; additionally, uPA can directly activate procol-
lagenase. Plasmin can also degrade the ECM indirectly 
through activation of numerous matrix metalloproteinase 
zymogens (Blasi and Carmeliet, 2002). Thus, using a com-
bination of these pathways, uPA regulates tumor progres-
sion and metastasis (Mahmood et al., 2018).

In the past two decades, uPA has increasingly been 
shown to play a role in cancer and is linked with disease 
progression and a negative outcome in patients (Mahmood 
et  al., 2018). High levels of uPA in many cancer types, 
including colorectal and breast cancer, have been shown 

Figure 2: Proteases are highly regulated on the protein level.
Expressed as inactive precursors called zymogens, proteases are 
then activated by multiple mechanisms. Once active, substrate and 
inhibitor compete for protease binding, and the outcome is defined 
by the local concentration of inhibitor.

Figure 1: Schematic overview of the rate-limiting steps during primary tumor growth and metastasis that are regulated by pericellular 
proteases.
Adapted with permission from Sevenich and Joyce (2014).
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to be indicative of more aggressive tumors and reduced 
overall survival (OS) rates. Notably, there is abundant evi-
dence of uPA playing a role in breast cancer, summarized 
in a review of 18 independent datasets containing a total 
of 8377 patients (Look et al., 2002). High levels of uPA were 
found to be indicative of poor OS and poor relapse-free 
survival. In lymph node-negative patients, high uPA levels 
are strongly prognostic and correlate with poor disease-
free survival (Duffy et al., 1998; Janicke et al., 2001; Look 
et al., 2002). These data, combined with the growing body 
of literature regarding the mechanisms by which uPA 
contributes to cancer progression, has led to evaluation 
of uPA levels as selection criteria to determine suitability 
for adjuvant treatment regimes in breast cancer (Harbeck 
et al., 2004; Duffy et al., 2014). uPA expression and activ-
ity has been shown to be directly up-regulated by JAG1/
Notch in breast cancer cell lines. These results correlate 
well with a survey of expression in primary carcinomas of 
the breast (Shimizu et al., 2011).

In colorectal cancer, high uPA is found in carcino-
mas compared to either adenomatous polyps or normal 
mucosa, and these high uPA levels correlate with low OS 
(Skelly et al., 1997). High levels of uPA in primary colorectal 
tumors have also been shown to positively correlate with 
distant metastases and negatively correlate with patient 
OS (Yang et al., 2000). Increases in uPA expression, protein 
levels and activity have also been confirmed in seminomas 
compared to normal tissue (Ulisse et al., 2010).

Recently, imaging of uPA activity in prostate cancer 
xenograft models has been achieved using a recombinant 
uPA antibody (U33) labeled with near-infrared fluoro-
phores or radionuclides (Figure 3) (LeBeau et  al., 2015). 
U33 preferentially binds to the active form of the protease 
and can therefore be used for the detection of protease 
activity in animal models. In addition, inhibition of uPA in 
numerous cell lines has been shown to reduce tumor cell 
invasion (Ossowski et al., 1991; Ertongur et al., 2004). For 
example, inhibition of uPA activity in CT-26 murine colo-
rectal carcinoma cells completely abolished the increased 
invasion caused by cytokine stimulation in vitro and 
almost completely ameliorated both LPS- and surgery-
induced metastatic tumor growth compared to controls in 
vivo (Killeen et al., 2007). Inhibition of uPA in a rat breast 
cancer xenograft model was shown to decrease the ability 
of the tumor to proliferate and invade surrounding tissue; 
this effect was more pronounced in combination with 
tamoxifen (Xing et al., 1997). Interestingly, uPA/uPAR have 
also been shown to be upregulated in tamoxifen-resistant 
breast cancer cell lines (LeBeau et al., 2013a, 2014).

Inhibiting the binding of uPA to uPAR suppresses angi-
ogenesis, migration and tumor growth both in vitro and in 

vivo (Crowley et al., 1993; Min et al., 1996). Antagonistic 
recombinant antibodies for uPAR were developed and 
found to inhibit non-small cell lung cancer (NSCLC) inva-
sion by blocking the uPA-uPAR interaction (Duriseti et al., 
2010). These uPAR-targeted antibodies, both as a mono-
therapy and coupled to 177Lu, inhibited tumor growth in a 
xenograft model of triple-negative breast cancer (LeBeau 
et al., 2013a). A uPAR-targeted multimodal tracer for pre- 
and intraoperative imaging in cancer surgery was recently 
developed and tested in pre-clinical models (Boonstra 
et  al., 2015). Furthermore, clinical PET imaging of uPAR 
using a peptide-based positron-emission tomography 
(PET) imaging ligand was performed in patients with 
breast, prostate and bladder cancer (Persson et al., 2015).

Together, these studies confirm that uPA up-regulation 
and activity in cancer correlates with increased rates of 
tumor invasion, metastasis and ultimately, poor survival.

Serine protease MT-SP1 is 
proteolytically active in tumors
Type II transmembrane serine proteases (TTSPs) 
are a family of cell surface proteases that contain an 

Figure 3: Visualization of uPA activity in a prostate cancer xenograft 
model with optical and SPECT/CT imaging using a recombinant uPA 
antibody (U33) that can detect uPA activity.
(A) U33 tumor labeling is detected in vivo with NIR optical imaging 
and ex vivo (a, lower panel) in an excised tumor and tumor section. 
(B) SPECT/CT imaging demonstrates tumor update of 111In-labeled U33 
in the PC3 model with a reconstructed transverse view (b, lower panel) 
also provided. Adapted with permission from LeBeau et al. (2015).

Brought to you by | COPYRIGHT CLEARANCE CENTER CCC
Authenticated

Download Date | 10/28/19 5:38 PM



968      O. Vasiljeva et al.: Harnessing tumor-associated proteases for prodrug activation

extracellular C-terminal serine protease domain and are 
divided into four subfamilies: (1) HAT/DESC, (2) hepsin/
TMPRSS, (3) matriptase, and (4) corin. mRNA expression 
of most family members has been determined in normal 
human tissue and changes in gene expression of several 
TTSP members have been documented in human tumors 
(Szabo and Bugge, 2008; Murray et al., 2016).

MT-SP1, a member of the matriptase subfamily, has 
a strong link to cancer. Skin-specific overexpression of 
MT-SP1 causes spontaneous epithelial malignancies in 
a transgenic mouse model (List et  al., 2005). Moreover, 
impairment of MT-SP1 reduces tumor cell growth and 
invasion through the decreased activation of hepatocyte 
growth factor (pro-HGF) and pro-uPA (Suzuki et al., 2004; 
Forbs et al., 2005). Recently, reduced MT-SP1 expression in 
a transgenic mouse model was shown to display attenu-
ated mammary tumor growth that was linked to a down-
regulation of the HGF/c-Met signaling pathway (Zoratti 
et al., 2015).

MT-SP1  mRNA expression is strictly epithelial with 
widespread but not ubiquitous expression in normal 
tissue (Bhatt et  al., 2003). Mouse studies have shown 
an essential role for MT-SP1 in the oral epithelium, epi-
dermis, hair follicles, and thymic epithelium (List et al., 
2002, 2003, 2006b). Expression of MT-SP1 has also been 
documented in a number of different cancers (List et al., 
2006a). As such, a survey of MT-SP1 expression in breast 
cancer cell lines and 107 primary breast tumors identified 
a correlation between MT-SP1 expression and HER2 levels 
(Welman et  al., 2012). The cognate inhibitor for MT-SP1, 
HAI-1, is an important regulator of protease activity. For 
example, MT-SP1 in normal human skin is in complex 
with HA1-1, whereas in squamous cell carcinomas, MT-SP1 
is in its unassociated form (Bocheva et al., 2009), suggest-
ing that its proteolytic activity might be up-regulated in 

these cancers. MT-SP1 is also inhibited by anti-thrombin, 
a plasma inhibitor that is also found in the interstitial 
matrix of tissues. MT-SP1 is inhibited endogenously by 
anti-thrombin in normal epithelial cell lines but not in 
cancer cell lines (Darragh et al., 2010).

Some of the strongest data for up-regulated MT-SP1 
activity leverages an antibody called A11 that is both a 
potent inhibitor of MT-SP1 activity (Ki ~ pM) and can dis-
criminate between the proteolytically active and inactive 
protease (Darragh et  al., 2010). This active site-specific 
antibody also can be used for staining of active protease 
in formalin-fixed paraffin-embedded (FFPE) tissue sec-
tions. In one study, the A11 antibody did not detect active 
matriptase in healthy colon tissue, but positive stain-
ing for active matriptase was evident in primary and 
metastatic cancer tissue cores (Figure 4) (LeBeau et al., 
2013b). Furthermore, A11  was recently used to demo-
nstrate MT-SP1-specific activation of an EGFR-targeting 
antibody prodrug in vivo in an H292 xenograft model 
(Wong et al., 2016).

Cysteine cathepsins in cancer
Lysosomal cysteine proteases (cathepsins) belong to 
the  family of papain-like proteolytic enzymes (clan 
CA, family C1) principally localized intracellularly 
in the endosomal/lysosomal compartment. Seven of 
these  proteases – cathepsins B (CTSB), C (dipeptidyl 
peptidase I), F, H, L, O and X/Z/P – exhibit ubiqui-
tous but differential expression in mammalian tissues, 
whereas other papain-like cysteine proteases (i.e. cath-
epsins J, K, S, V and W) are only expressed by specific 
cell types (Rawlings and Barrett, 2000; Deussing et al., 

Figure 4: Visualization of MT-SP1 activity in healthy and malignant colon tissue using immunofluorescence staining with a recombinant 
MT-SP1 antibody (A11) that can detect MT-SP1 activity.
No active matriptase was detected in healthy colon, whereas positive staining for active matriptase was found in a stage II (T3N1M0) primary 
colon cancer section and a hepatic metastasis section. Adapted with permission from LeBeau et al. (2013b).
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2002). Traditionally, lysosomal cysteine proteases are 
considered to execute nonspecific protein degradation 
within the lysosome at acidic pH (Barrett, 1992). Yet, 
there is growing evidence for specific functions of these 
enzymes and for their function in the extracellular space 
(Vasiljeva et  al., 2007). Elevated cathepsin expression 
and/or activity has been shown to be associated with 
cancer progression in many different tumor types (Gabri-
jelcic et al., 1992; Hirano and Takeuchi, 1994; Kos et al., 
1995; Khan et  al., 1998; Fernandez et  al., 2001; Talieri 
et al., 2004; Gocheva and Joyce, 2007) and supported by 
numerous studies in mouse cancer models (Mohamed 
and Sloane, 2006; Gocheva and Joyce, 2007; Vasiljeva 
and Turk, 2008). Moreover, the level of cathepsin expres-
sion has been found to positively correlate with a poor 
prognosis for cancer patients and has been suggested to 
be a prognostic marker (Campo et  al., 1994; Lah et  al., 
2000; Scorilas et al., 2002).

Among the lysosomal cysteine proteases, cathepsin 
B is the most abundant and the most thoroughly studied. 
Increased extracellular levels of cathepsin B have been 
reported in human colorectal, liver and lung cancer cells 
(Maciewicz et al., 1989; Heidtmann et al., 1997; Koblinski 
et  al., 2002). Notably, the secretion of cathepsin B was 
shown to occur from cells that do not exhibit an increase 
in mRNA levels, indicating that its secretion is likely due 
to altered intracellular trafficking and distribution (Frosch 
et  al., 1999). Another indication that tumor cells secrete 
cathepsin B is the increased serum level of this protease 
in patients with hepatocellular and ovarian carcinomas, 
prostate cancer and melanoma (Gabrijelcic et  al., 1992; 
Kos et al., 1997; Leto et al., 1997; Kos et al., 1998; Miyake 
et al., 2004; Herszenyi et al., 2008). Cathepsin B has also 
been found in other body fluids surrounding tumors, such 
as bronchoalveolar lavage fluid of lung cancer patients 
or cerebrospinal fluid from patients with leptomenin-
geal metastasis (Luthgens et al., 1993; Nagai et al., 2003). 
In addition, the up-regulation of cysteine cathepsins 
by other cells of the tumor microenvironment, such as 
macrophages, has been reported (Mohamed and Sloane, 
2006; Vasiljeva et al., 2006; Gocheva et al., 2010; Mikhay-
lov et al., 2011; Akkari et al., 2016).

In addition to being secreted, cathepsin B has been 
found to be plasma membrane-associated in numerous 
cancer cell lines (Rozhin et  al., 1994), and cathepsin B 
activity is evident on the surface of living cells in culture 
(Linebaugh et al., 1999). One mechanism of cathepsin B 
association with the cell surface is through an interaction 
with annexin II heterotetramers, directing cathepsin B 
to caveolae (Cavallo-Medved et  al., 2003), which harbor 
a wide variety of other interdependent proteases (e.g. 

membrane-bound matrix metalloproteases and serine 
proteases).

Once localized in the extracellular space, active cath-
epsins have been shown to be able to degrade the protein 
components of basement membranes and the interstitial 
connective matrix including laminin, fibronectin, elastin, 
tenascin, E-cadherin and various types of collagen 
(Creemers et al., 1998; Mai et al., 2002). Cathepsin B also 
indirectly enhances proteolysis by activating precursors of 
serine proteases and matrix metalloproteases, including 
pro-uPA, plasminogen or pro-MMPs, to their active forms 
(Kobayashi et al., 1991, 1993) (Figure 5). In addition, other 
tumor-associated cysteine cathepsins, cathepsins L and S, 
have been shown to act as ‘sheddases,’ cleaving the extra-
cellular domains of adhesion molecules and transmem-
brane receptors from the surface of cancer cells (Sobotic 
et al., 2015).

Leveraging the selective extracellular presence of 
cysteine cathepsins in the tumor microenvironment, 
several approaches for imaging agents and drug  delivery 
systems targeting cathepsins have been developed 
recently. Many of them employ various nano-carriers, 
such as liposomes, nanofibers, ankyrin repeat proteins 
(DARPins), polyglutamate and dendrimer nanoparticles 
functionalized with cathepsin binding moieties or 

Figure 5: Role of extracellular cathepsins in cancer progression and 
invasion.
Cathepsin activity mediates (A) proteolytic cascade activation, 
(B) degradation of the ECM, and (C) inactivation of cell adhesion 
proteins. Adapted with permission from Gocheva and Joyce (2007).
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cleavable substrates (Mikhaylov et  al., 2014; Ben-Nun 
et al., 2015, 2017; Jeong et al., 2015; Kramer et al., 2017a,b).

Together, these data provide strong evidence that the 
‘lysosomal’ cysteine proteases are secreted or translocated 
to the extracellular milieu in cancer to fulfill specific func-
tions and thus, may be utilized for the targeted delivery of 
diagnostic and/or therapeutic compounds.

Legumain in cancer
Legumain is a cysteine endopeptidase (clan CD, family 
C13) and the only asparaginyl endopeptidase in mammals. 
In normal tissues, legumain is primarily a lysosomal pro-
tease, as with cathepsins. However, in cancer, legumain is 
localized to the cell surface and in membrane-associated 
vesicles concentrated along the invadopodia of tumor 
cells (Liu et  al., 2003a). Analogous to cathepsins, legu-
main is synthesized as a pro-enzyme that undergoes auto-
activation in the acidic conditions found in the lysosome 
or tumor microenvironment.

Human legumain was cloned in 1997 (Chen et al., 1997) 
and shown to process antigens for MHC class II presenta-
tion (Manoury et al., 1998; Watts et al., 2005). Expression 
in normal tissue is highest in the kidney with detectable 
staining in the liver and spleen. Legumain is expressed in 
a wide variety of solid tumors, including 100% of breast 
and 95% of colon tumors tested in one study (Table 1) 
(Liu et  al., 2003a). Legumain staining in IHC also may 
have prognostic value in breast cancer patients (Gawenda 
et  al., 2007). In colorectal tumors, legumain has been 
correlated with a poor prognosis (Murthy et  al., 2005). 
Notably, knock-down of legumain in mouse models of 
cancer resulted in a marked decrease in tumor growth and 
metastasis (Luo et al., 2006). The differential expression of 
legumain between tumor and normal tissue was exploited 
initially in the protease-activated pro-drug legubicin (Liu 
et  al., 2003a) and subsequently in protease-activated 

etoposide- (Stern et al., 2009) and auristatin-derived pro-
drugs (Bajjuri et al., 2011), with all three approaches dem-
onstrating efficacy in tumor models.

These studies confirm upregulation of legumain in 
cancer and support the role of legumain in disease pro-
gression. Extracellular localization of legumain, coupled 
with activation in the acidic conditions of the tumor 
microenvironment, suggests that its proteolytic activity 
can be leveraged for therapeutic targeting.

Matrix metalloproteinases (MMPs) 
in cancer
MMPs are a family of zinc-dependent endopeptidases 
that play a crucial role in various physiological processes 
including tissue remodeling and organ development 
(Page-McCaw et  al., 2003), regulation of inflammatory 
processes (Parks et  al., 2004) and in diseases such as 
cancer (Egeblad and Werb, 2002). The 23 MMPs expressed 
in humans are categorized by their architectural features. 
Closely related to the MMPs are the so-called ADAM (a dis-
integrin and metalloproteinase) and ADAMTS (a disinte-
grin and metalloproteinase with thrombospondin motifs) 
families of metzincin proteinases. ADAMs are membrane-
anchored proteases and fulfill a broad spectrum of func-
tions with roles in fertilization, development and cancer 
(Berndt et al., 2008). The roles of the other metzincin pro-
teinases in cancer have also been extensively reviewed 
(Murphy, 2008).

MMPs and ADAMs have been found to be upregu-
lated in numerous types of cancer. Moreover, although 
tumor cells from various tissues can express members of 
the MMP and ADAM families, the major source of these 
proteases appears to be from stromal cells infiltrating the 
tumor (Egeblad and Werb, 2002). Different types of stromal 
cells produce a specific set of proteases and inhibitors 

Table 1: Legumain detection in human tumors (Liu et al., 2003a).

Carcinoma type Number analyzed Number positive Percentage positive Degree of positivity

Breast carcinoma 43 43 100% ++ + 
Colon carcinoma 34 32 95% ++ + 
Lung carcinoma 24 14 58% ++ + 
Prostate carcinoma 56 42 75% ++ + + 
Ovarian carcinoma 23 17 73% ++ 
CNS tumors 8 8 100% ++ 
Lymphoma 14 8 57% +
Melanoma 12 5 41% +
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(Kessenbrock et  al., 2010), which are released into and 
alter the tumor microenvironment. The cellular source 
of MMPs can therefore have important consequences on 
their function and activity (Ardi et al., 2007).

MMPs were initially viewed primarily as regulators of 
tissue destruction or remodeling but are now well-recog-
nized players in numerous steps of tumor progression and 
metastasis (Szarvas et al., 2011) and are therefore consid-
ered to be multifunctional proteases (Coussens et al., 2002; 
Egeblad and Werb, 2002; Freije et al., 2003; Hojilla et al., 
2003; Decock et  al., 2011). The characterization of new 
MMP substrates as well as the generation of genetically 
modified animal models with gain or loss of MMP func-
tion have been used to demonstrate the relevance of MMP 
activities in the early stages of cancer development. Pro-
teolytic processing of bioactive molecules by MMPs con-
tributes to the formation of a complex microenvironment 
that promotes malignant transformation in early stages of 
cancer. For example, growth-factor receptors, cell adhe-
sion molecules, chemokines, cytokines, apoptotic ligands 
and angiogenic factors are some examples of the diversity 
of substrates targeted by MMPs (Egeblad and Werb, 2002; 
Hojilla et al., 2003; Folgueras et al., 2004). In particular, 
it has become clear that MMPs contribute to angiogenesis 
by more than just degrading matrix components. They are 
capable of processing a large array of extracellular and 
cell-surface regulatory proteins and therefore, contribute 
both in the onset and in the maintenance of angiogenesis 
(Berndt et al., 2008).

Numerous protease-activated prodrugs, nanotech-
nology-based drug delivery systems, gene delivery 
systems and imaging systems have been engineered 
by taking advantage of tumor-associated MMPs. For 
example, several different MMP-activated imaging 
agents have been developed and successfully validated 
(McIntyre et  al., 2004; Shi et  al., 2006; Zhang et  al., 
2006). Recently, nanoparticle sensors equipped with 
an MMP9  substrate have been used to non-invasively 
detect tumor-associated MMP activity in mouse models 
of ovarian and liver cancer through the release of a fluo-
rescent reporter group in the urine (Kwon et al., 2017).

Although extracellular proteolysis is widely impli-
cated in cancer promotion, MMPs and other proteases 
exhibit tumor-suppressing effects in several circumstances 
(Folgueras et al., 2004). These observations, together with 
the identification of novel anti-tumorigenic functions of 
MMPs in numerous steps of tumor progression and inva-
sion, might partly explain why broad-spectrum MMP 
inhibitors failed in phase III clinical trials and have made 
necessary a reformulation of MMP inhibition strategies for 
cancer treatment. Whereas multiple protease inhibition 

strategies have been largely disappointing for cancer 
therapy, approaches exploiting upregulated proteases for 
tumor-targeting therapies have demonstrated potential. 
Among these approaches, the prodrug-based strategy is 
one of the most extensively researched in the last decade.

Protease-activatable prodrugs
The increased activity of proteases in cancer, coupled with 
the tight regulation of protease activity in normal tissues, 
creates an opportunity to design novel protease-activatable 
therapeutics in which effective therapy is selectively deliv-
ered to tumors while minimizing drug toxicity to normal 
tissues (Choi et al., 2012; Weidle et al., 2014). One of the 
most common strategies for protease-activatable prodrug 
design is to conjugate protease-cleavable peptide sub-
strates to chemotherapeutic compounds. This approach 
has been applied to multiple classes of proteases known 
to be upregulated in the tumor microenvironment, such as 
cathepsins (Baurain et al., 1980; Ueki et al., 2013; Zhong 
et  al., 2013), plasmin (Barthel et  al., 2012; Chakravarty 
et al., 1983), matrix metalloproteases (Albright et al., 2005), 
and legumain (Liu et al., 2003a; Stern et al., 2009), and has 
resulted in increased efficacy and reduced off-tissue drug 
accumulation and toxicity in vivo.

To create protease-activatable prodrugs with improved 
pharmacokinetic properties, numerous drug delivery 
systems have been explored, including serum albumin 
(Trouet et al., 1982; Mansour et al., 2003), hydrogels (West 
and Hubbell, 1999; Lutolf et al., 2003), liposomes (Kondo 
et al., 2004), nanoparticles (Gu et al., 2013; van Rijt et al., 
2015; Xu et  al., 2015) and other synthetic polymers (Li 
et al., 1998; Chau et al., 2004). As an example, PK1 (FCE 
28068), which consists of N-(2-hydroxypropyl) meth-
acrylamide (HPMAcp) polymer conjugated to doxorubicin 
via a cathepsin B activation sequence, was found to elicit 
improved doxorubicin exposure and efficacy compared to 
doxorubicin alone (Loadman et al., 1999). PK1 and poly-
mers containing cathepsin B or prostate-specific antigen 
(PSA) activation sequences have been evaluated in the 
clinic and showed signals of activity and reduced toxic-
ity (Seymour et  al., 2009). Paclitaxel poliglumex (PPX), 
a macromolecular drug conjugate that links paclitaxel 
with a biodegradable polymer, poly-L-glutamic acid, was 
designed to release paclitaxel from the polymeric back-
bone by cathepsin B proteolysis (Chipman et al., 2006). A 
phase III clinical trial comparing PPX vs docetaxel in the 
second-line treatment of NSCLC has shown that while PPX 
and docetaxel produced similar survival results, different 
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toxicity profiles were observed between the two treatment 
groups (Chipman et al., 2006).

In addition to small molecules, protease-activated 
prodrugs have also been designed using cytotoxic pro-
teins or cytotoxic receptor ligands. For example, in vivo 
feasibility has been demonstrated using engineered 
anthrax toxin that requires uPA and MMP activation for 
toxin assembly (Liu et al., 2003b, 2005). Recently, initial 
clinical safety has been demonstrated with protease-
activatable cell-penetrating peptides (Unkart et  al., 
2017). Tumor necrosis factor and CD95L prodrugs have 
also been developed to induce apoptotic pathways upon 
uPA and MMP proteolysis (Gerspach et al., 2006; Water-
mann et al., 2007).

Incorporation of tumor-targeting moieties into pro-
tease-activatable prodrug formats is used to enhance 
tumor-specific activation (Choi et  al., 2012). Among the 
strategies evaluated, antibody-based targeting of drugs 
(i.e. antibody drug conjugates) has been the most success-
ful to date. The FDA-approved anti-CD30 antibody-drug 
conjugate (ADC) ADCETRIS® (Brentuximab vedotin or 
SGN-35) contains a cathepsin-cleavable valine-citrulline 
linker that utilizes the activity of lysosomal proteases 
for aurostatin payload release intracellularly (Katz et al., 
2011). Non-internalizing, protease-activatable ADCs are 
also being evaluated for extracellular payload release 
through the activity of cathepsins in the tumor microenvi-
ronment (Gebleux et al., 2017).

A unique approach of targeting therapeutic antibodies 
has been developed by CytomX Therapeutics by engineer-
ing protease-activatable monoclonal antibody prodrugs 
called Probody™ therapeutics (Desnoyers et al., 2013). The 
Probody technology utilizes a peptide mask that is attached 
to the antibody through a protease-cleavable linker and 
limits the ability of the antibody to bind to its target. The 
linker can be cleaved in the tumor microenvironment by 
protease(s) preferentially active in cancer tissue, leading to 
removal of the mask and target engagement by the released 
antibody (Desnoyers et al., 2013; Wong et al., 2016; Lin and 
Sagert, 2018). In this way, Probody therapeutics have the 
potential to minimize systemic on-target toxicity while 
maximizing anti-tumor activity. Notably, this platform 
has been shown to be compatible with multiple antibody-
based therapeutic modalities, including naked antibodies 
to immune targets, antibody drug conjugates, bispecific T 
cell-engaging antibodies and CAR-based cellular therapy 
(Weaver et al., 2015; Tipton et al., 2016; Spira et al., 2017; 
Boustany et al., 2018).

Taken together, proteases clearly play an important 
and complex role at different stages of tumor progres-
sion and metastasis. Harnessing upregulated protease 

activity in the tumor microenvironment has emerged as 
a promising and powerful approach for cancer detec-
tion and treatment. The use of protease-targeted and 
protease- activatable prodrug technologies can enable 
tumor microenvironment-specific therapeutic activity, 
thereby reducing on-target toxicity in normal tissues and 
improving the therapeutic index. Continued efforts to 
uncover upregulated protease activities during tumori-
genesis is expected to further expand the diagnostic and 
therapeutic potential of protease-guided technologies 
and promote the development of next-generation cancer 
therapeutics.
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