

Probody-Interferon-alpha 2b Combines Antitumor Activity with Improved Tolerability

BACKGROUND

BACKGROUND Type I interferons can exert direct antitumor effects, modulate tumor stroma, and induce de novo antitumor immune responses. They have demonstrated combination activity with PD-(L)1 blockade to potentially expand the benefit to patients with unresponsive tumors. Despite its potential, the toxicity of interferon alpha has limited its clinical use. Here we applied CytomX proprietary Probody[®] Therapeutics (Pb-Tx) technology to create a conditionally activated IFN-a2b (Pb-IFN-a2b) with minimal activity in its prodrug form. The prodrug is activated in the tumor microenvironment (TME), leading to preferential activity in the TME but not in healthy tissues. Pb-IFN-a2b demonstrated an enhanced tolerability profile compared to standard IFN therapy without compromising its antitumor effects.

METHODS The Pb-Tx platform technology attenuates activity of a molecule by blocking its active regions through affinity or steric interference. Such blockade, termed masking, is reversed upon proteolytic cleavage of a substrate-containing linker between the molecule and the mask by tumor associated proteases. Pb-IFN molecules were engineered with a dual masking approach combining the effects of steric inhibition by Fc fusion and affinity interference by a peptide mask.

RESULTS Pb-IFN-a2b demonstrated significant reduction (1000-fold or more) of its specific activity in vitro, including antiproliferative effects and immune cell activation. Treatment with tumor-associated proteases or exposure to viable tumor tissues fully restored its activity. Activated but not masked Pb-IFN-a2b induced a gene expression profile consistent with interferon signaling in primary human immune cells. In vitro studies with dissociated human tumors demonstrated the ability of Pb-IFN to activate the tumor immune infiltrate, which could be further enhanced by concomitant PD-L1 blockade.

Antitumor activity of the Pb-IFN-a2b in xenograft studies is equal to or greater than Peg-IFN- α 2b. Pb-IFN- α 2b demonstrated significant antitumor activity in syngeneic mouse tumor models without evidence of toxicity. Consistent with in vitro observations, this antitumor activity was further enhanced by PD-(L)1 blockade.

Toxicology studies performed in hamsters demonstrated enhanced tolerability of the molecule compared to its unmasked control. Pb-IFN-a2b did not cause hematological changes, body weight loss, or mortality associated with unmasked interferon at significantly lower dose level.

In cynomolgus monkey, Pb-IFN-a2b demonstrated linear pharmacokinetics, extended half-life, and was well tolerated at doses up to 15 mg/kg.

CONCLUSIONS Pb-IFN-a2b shows improved tolerability and antitumor activity in preclinical studies compared to traditional IFN treatment. These data support Probody cytokine therapeutics as a promising addition to current immunotherapy regimens, potentially expanding their benefits to patients with typically unresponsive tumors.

The Probody therapeutic platform preferentially activates biologics in the TME

- "Masked" to limit activity in normal tissue
- "Un-masked" by tumor-associated proteases
- Linkers cleaved by multiple proteases for utility across tumor types

Improve therapeutic window for validated targets

- Create therapeutic window for undruggable targets
- Applicable to multiple binding modalities

Activation by tumor proteases fully restores IFN-a2b activity

active IFN-a2b cytokine.

Pb-IFN-a2b attenuates CXCL10 and IFNg release by PBMC

Pb-IFN-a2b

differentially expressed.

Alexey Berezhnoy, Hsin Wang, Nicole Lapuyade, Na Cai, Carol LePage, Michael B. Winter, Ivan Ye, Brandon Lam, Hong Lu, Michael Krimm, Ken Wong, Robert T Dunn II, Leila Boustany, Madan Paidhungat, Marcia Belvin, Erwan Le Scolan, and Dylan Daniel CytomX Therapeutics, Inc., South San Francisco, CA

> Healthy donor PBMC were treated with Pb-IFN-a2b or Pb-IFN-a2b activated by in vitro protease treatment for 5hr in the presence of Brefeldin A. Cells were stained for CD3/CD19/CD14

fixed/permeabilized, and stained for intracellular expression of CXCL10 and IFN-gamma. Cells were gated on viable monocytes treated with 1 ng/mL of IFN-a2b molecules (top row) or viable CD19-negative lymphocytes treated with 10 ng/mL.

Activation-dependent induction of type I interferon gene signature by

PBMC from healthy donors (N=4) were treated in vitro with 10 ng/mL of Pb-IFN-a2b, uPA-activated Pb-IFN-a2b, or pegylated IFN-a2b (Merck, USA) for 24hr. mRNA from treated cells was used for HT RNAseq. Genes with an adjusted *P*<0.05 and absolute log2 fold change >1 were called as

Fluorescently labeled Pb-IFN-a2b was incubated on tumor tissue sections at 37°C (Howng et al. 2021). Recovered solution was then analyzed through capillary electrophoresis, enabling quantification of Pb-IFN-a2b in situ cleavage (activation) or using HEK-blue IFNA reporter model. A protease activity-low tissue was used as a negative control.

Pb-IFN-a2b activates immune infiltrate of dissociated tumors

Bioactivity 2.0 -0.5 -TNBC tumor 16hr TNBC tumor 2hr → Unactivated Pb-IFN-a2b → Low activity control tissue 2hr --- Low activity control tissue 16hr Low activity control tissue

Size

RESULTS

Pb-IFN-a2b or recombinant IFN-a2b were incubated on tumor tissue sections and analyzed as described Pb-IFN-a2b or 1 ng/mL of recombinant IFN-a2b was calculated relative to 0hr values. **Bottom panel:** incubated for 0 or 24hr in the absence of tumor tissues is plotted. Each line connects an individual sample

Mice (n=5 per group) were implanted subcutaneously with 1.5×10⁶ MC38 cells and treated when the average tumor volume reached ~80 mm³. Indicated doses of Pb-IFN-a2b were administered s.c. twice weekly for 3 weeks. Control uncleavable molecule was constructed by replacing protease cleavage sites with uncleavable linker sequence.

15 20

Studv dav

Pb-IFNa-A/D preferentially activates immune cells in tumor

Mice (N=5 per group) were implanted subcutaneously with 1.5×10⁶ MC38 cells in serum-free medium and treated with Pb-IFNa-A/D at indicated dose levels when the average tumor volume reached 80 mm³. 6 days after the treatment tumors and tissues were harvested and analyzed by flow cytometry. Gated on viable CD45+CD3+ cells.

Pb-IFN-a2b is well tolerated in hamsters

Single administration (15 mg/kg) Alkaline phosphatase (Day 7)

In vivo efficacy of Pb-IFNa-A/D

- 10 15 20 25 Study day

Male Syrian golden hamsters were treated i.p. with 15 mg/kg of Pb-IFN-a2b or unmasked Fc-IFN-a2b fusion protein. Clinical observations and body weights were measured at indicated time points. Whole blood was collected 144hr

Male Syrian golden hamsters (N=5) were treated i.p. with three weekly administrations of 15 or 30 mg/kg - Pb-IFN-a2b 30 mg/kg Pb-IFN-a2b, or 7.5 or 15 mg/kg of unmasked proteins. Survival result include animals found dead or experienced body weight loss >15%.

Pb-IFN-a2b is well tolerated in cynomolgus monkey

Objective

• Characterize toxicity, toxicokinetics, and biomarker changes of Pb-IFN-a2b after single subcutaneous administration to cynomolgus monkeys

Study design

- Single subcutaneous dose on Day 1 with a 30-day observation period (Hematology, Clinical Chemistry, Flow, Cytokines, RNAseq, TK)
- Doses; 0.03, 0.3, 3.0 and 15 mg/kg
- N=2 per dose group

Results

0.03 mg/kg	0.3 mg/kg	3 mg/kg	15 mg/kg
-	—	—	-
_	_	_	+/
-	—	—	+/
_	—	+	+
-	_	+	++
	0.03 mg/kg 	0.03 mg/kg 0.3 mg/kg	0.03 mg/kg 0.3 mg/kg 3 mg/kg + +

NOAEL for Peg-IFN-a2b in a historic benchmark study was ~2.5 mg/kg (in females). A single s.c. dose of Peg-IFN-a2b at ~9.8 mg/kg (117721 mg/m²) resulted in mortality.

Observations

- Pb-IFN-a2b is well tolerated at doses up to 15 mg/kg
- Pb-IFN-a2b demonstrated linear pharmacokinetics and extended half-life

Pb-IFN-a2b attenuates IP-10 release in cynomolgus monkeys

CONCLUSIONS

- 1. Pb-IFN-a2b has significantly reduced (1000-fold or more) specific activity that is fully restored through activation by tumor-associated proteases
- 2. Pb-IFNa-A/D suppresses growth of syngeneic murine tumors in vivo. The effect is associated with immune activation in TME, but not TDLN
- 3. Pb-IFN-a2b is well tolerated in hamsters compared with unmasked cytokine, including tolerability of multiple administrations of 30 mg/kg
- 4. In cynomolgus monkey, Pb-IFN-a2b demonstrated linear pharmacokinetics and an extended half-life, and was well tolerated at doses up to 15 mg/kg with an attenuated IFN response compared to activated IFNa

The CytomX platform is being extended to additional cytokine families.

REFERENCES

Rehberg, et al. Specific molecular activities of recombinant and hybrid leukocyte interferons. *J Biol Chem*. 1982;257:11497-502.

Altrock, et al. Antiviral and Antitumor Effects of a Human Interferon Analog, IFN-αCon1, Assessed in Hamsters. J. of Interferon Research. 1986;405-415.

Howng, B, Winter, MB, LePage, C, et al. Novel Ex Vivo Zymography Approach for Assessment of Protease Activity in Tissues with Activatable Antibodies. Pharmaceutics. 2021;13:1390.